

Department Of electrical and computer Engineering
ENEE 3309 Communication Systems

Course project

Instructor: Dr. Wael Hashlamon
Made By: Islam Jihad
ID: 1191375
Date:8/12/2021

As we have the signal
$m(t)=\cos (2 \pi f m t)$
we want to send and modulate it using the carrier
$c(t)=\cos \left(2 \pi f_{c} t\right)$
using the AM modulation method so the general formula will be as following:
$s(t)=A c\left[1+\mu \cos \left(2 \pi f_{m} t\right)\right] \cos \left(2 \pi f_{c} \mathrm{t}\right)$

And giving that $\mathrm{Ac}=1 \quad \mu=0.25 \quad \mathrm{f}_{\mathrm{m}}=1 \mathrm{~Hz} \quad \mathrm{f}_{\mathrm{c}}=25 \mathrm{~Hz}$
We have to plot $s(t)$ over 2 cycles of the message that means we have to know the time for the message for 1 cycle $\mathrm{T}=1 / \mathrm{fm}=1 / 1=1$ and multiply it with 2 to get for 2 cycles will be 2 seconds.

The message will be carried by carrier $\mathrm{c}(\mathrm{t})$ which need to be 10 times bigger at least.

As seen the blue graph show the message signal over 2 cycles and the pink graph is the carrier over 2 cycles so when we modulate it by AM method, we get the $3^{\text {rd }}$ figure in red for $\mathrm{s}(\mathrm{t})$ which give us the carrier signal under message signal effect over 2 seconds.
The green graph shows the demodulated signal from $\mathrm{s}(\mathrm{t})$ and this was by taking the absolute value of $A c\left[1+\mu \cos \left(2 \pi f_{m t}\right)\right]$ without the carrier signal (Ac was ignored in the code because it equal to 1), this work as an ideal envelope detector

In the $3^{\text {rd }}$ part of the project we were asked to plot D vs taw and to do this we need to find D (mean squared error between $s(t)$ and $y(t)$)

And taw ($1 / f c \leq \tau \leq 1 / f_{\mathrm{m}}$)
To calculate taw, it equal $\mathrm{R}^{*} \mathrm{C}$ in physical way but to calculate it from the message it's the less mean squared error between $s(t)$ and $y(t)$, so I had to make a for loop that loops over taw values and every value I calculated the error with the real time for $\mathrm{Y}(\mathrm{t})$ and add the result to a summation variable instead of integration as it's easier to implement

$$
D=\frac{1}{T_{m}} \int_{0}^{T_{m}}(y(t)-m(t))^{2} d t
$$

Then after finding the less mean squared error which means taw, I implemented the $\mathrm{Y}(\mathrm{t})$ function with constant taw value which was 0.75 with me as it's mean squared error was 0.0014 (the lowest)

Attach this screenshot

The blue graph shoes D vs taw as seen the lowest value of taw is between 0.7-0.8
Which actual was 0.75
In the second graph I plot $\mathrm{Y}(\mathrm{t})$ with constant taw over the $\mathrm{s}(\mathrm{t})$ function with time to see where the top points are as seen the capacitor is drains it's voltage tell it reach $s(t)$ so the diode start to work again and charge the capacitor to the maximum value of $s(t)$ in that range, the capacitor or in coding the $\mathrm{Y}(\mathrm{t})$ is generated as following:

If $\mathrm{s}(\mathrm{t})>=\mathrm{s}(0) \mathrm{e}^{-\mathrm{t} / \mathrm{taw}}$ then $\mathrm{Y}(\mathrm{t})$ at that point of time equal to $\mathrm{s}(\mathrm{t})$
If $\mathrm{s}(\mathrm{t})<\mathrm{s}(0) \mathrm{e}^{-\mathrm{t} / \text { taw }}$ then $\mathrm{Y}(\mathrm{t})$ at that point of time equal to $\mathrm{s}(0) \mathrm{e}^{-\mathrm{t} \text { taw }}$
Until reach the next peak of $s(t)$ then the exponential factor changes to the next peak and goes on like that till it finish the 2 cycles.

Attached the 2 codes of the project here:

$1^{\text {st }}$ code:

```
% Ac[1 + m cos(2 pi fmt)] cos(2pi fc t)
t= 0:0.001:2;
fc=25;
fm=1;
m=0.25;
Ac=1;
mt= cos(2 * pi * fm * t);
ct= cos( 2 * pi * fc * t);
st= Ac* ct .* (1 + m.*mt);
subplot(4,1,1);
plot(t,mt);
axis([0 2 -2 2]);
title('messege m(t)');
xlabel('time');
ylabel('m(t)');
grid on;
%***********
```

subplot (4,1,2);
plot(t,ct,'m');
axis([0 2 -2 2]);
title('Carrir C(t)');
xlabel('time');
ylabel('C(t)');
grid on;
\%***********
subplot (4,1,3);
plot(t,st,'r');
axis([0 $2-2$ 2]);
title('AM signal s(t)');
xlabel('time');
ylabel(' sig amp s(t)');
grid on;
\%***********
absm=(1 + m.*mt);
env= abs(absm);
subplot (4, 1, 4) ;
plot(t,env,'g');
axis([0 2 -2 2]);
title('demodulated signal');
xlabel ('time');
ylabel('Y(t)');
grid on;
the $2^{\text {nd }}$ code:

```
t= 0:0.001:2;
st=1*(1 + 0.25 * cos(2 * pi * 1 * t)).* cos(2 * pi * 25 * t);
%plot(t,st);
absf=(1 + 0.25 * cos(2 * pi * 1 * t));
env= abs(absf);
%plot(t,absf);
taw= 0.04:0.01:1;
Y=zeros(1,2001);
arr sum=zeros(1,97);
To=0;
b=0;
for i = 1:1:97
    for j=1:1:2001
        if st(j)< (b*exp(-1*((t(j)-To)/taw(i))))
            Y(j)=(b*exp(-1*((t(j)-To)/taw(i))));
        else
            Y(j)=st(j);
            if st(j)== env(j)
            b=st(j);
            To=t(j);
            end
        end
    end
    sum=0;
    for x= 1:1:2001
        sum= sum + (env(x) - Y(x))^2;
    end
    arr_sum(i)=sum/2001;
    To=\overline{0};
    b}=0\mathrm{ ;
end
m=min(arr_sum);
for i= 1:1:97
    if m==arr_sum(i)
        index=i;
    end
end
disp(taw(index));
```

6|Page

```
subplot(2,1,1);
plot(taw, arr_sum);
title('D VS taw');
xlabel('taw');
ylabel('mean square error D');
grid on;
```

arr=zeros $(1,97)$;
Yn=zeros (1,2001);
To=0;
b=0;
for i $=1: 1: 97$
for $j=1: 1: 2001$
if $s t(j)<(b * \exp (-1 *((t(j)-T o) /$ taw (index) $)))$
Yn $(j)=\left(b^{*} \exp \left(-1^{*}((t(j)-T o) /\right.\right.$ taw $\left.\left.(i n d e x))\right)\right) ;$
else
Yn(j)=st(j);
if st(j)== env(j)
b=st(j);
To=t(j);
end
end
end
To=0;
$\mathrm{b}=0$;
end
subplot (2,1,2);
plot(t,Yn,t,st);
\%plot(t,Yn,t,st,t,Y);
title('Y(t) to the min taw');
xlabel('time');
ylabel('Y(t)');
grid on;

